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Note 

Numerical Evaluation of Oscillatory integrals Such as 

the Modified Bessel Function K;,(x) 

I. INTRODUCTION 

We present an “orthogonalized” Fourier method of numerically evaluating 
oscillatory integrals of the form 

where 5 is a constant. This method is particularly efficient whenf(t) is a function 
whose Fourier transform, f(o), decays rapidly for large w. Maximal efficiency is 
achieved as 5 becomes large and many cycles of the sine or cosine contribute 
significantly. When 5 is large enough, we need to evaluatef(t) only twice per cycle. 
We explicitly present an analysis of the cosine form of Eq. (1) and take advantage 
of the fact that for a wide class of functionsfft), the even part of the sum 

rapidly approaches A, + A, cos <t for large enough 5. Thus, a finite discrete 
Fourier analysis of the sum extracts A, numerically, and the remaining quadrature 
is performed analytically. Difference-of-large-number errors are avoided by 
“orthogonalizing” the function f(t) over the successive cycles of cos <t or sin <t. 
The analysis and method described below extend easily to the sine function integral. 

Difficulties occur in the numerical evaluation of Eq. (1) by standard quadrature 
methods (e.g., Simpson’s rule) in the important limit when 5 is Iarge. In this case, 
approximation of the integrand by simple polynomials could only be done 
accurately over a prohibitively small interval of t. Further problems arise from 
strong cancellation of the positive and negative contributions to the integral. 
Methods which approximate f(t) by a low-order polynominal, such as those 
suggested by Filon [l], Clendenin [2], and Flinn [3], deal with the problem of the 
small integration interval but do not really apply here because of the infinite 

425 
Copyright Q 1975 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



426 BORIS AND ORAN 

integration range. Hurwitz and Zweifel [4], Hurwitz, Pfeifer, and Zweifel [5], 
Saenger [6], and deBalbine and Franklin [7], deal with the cancellation problem by 
converting the infinite integral into a summation and integrating over successive 
half-cycles of the sine or cosine term before summing. Attempts to accelerate the 
convergence of these methods have been made by Longman [8], using an Euler 
transformation, and Alaylioglu, Evans, and Hyslop [9], using the Shanks [lo] 
transformation. 

This study of oxcillatory integrals was motivated by a need to evaluate the 
modified Bessel functions of imaginary order, K,(x) where v = ic and 

K<,(X) = Iom e+ cash t cos ct dt, 

and its derivative with respect to x, 

K&(X) = - Jou cash t cos i) e+cosht dt 

(3) 

(3’) 

over a wide range of the parameters x and 5. These Bessel functions occur in cal- 
culations of quantum mechanical cross sections and reaction rates for electron 
impact excitation of ions and neutrals (cf. calculations of Oran and Davis [Ill 
and references therein). The modified Bessel function is also a solution to the one- 
dimensional Schrodinger equation with potential energy V(r) = V, - Ae-T/a, 
where A, V, , and a are parameters and I is the distance from the center of force. 
This potential can represent the repulsive forces of a diatomic-molecule, as shown 
by Luke [12]. 

Hunter [13] has discussed the problems of evaluating the integrals representing 
this kind of Bessel function. The quadrature techniques he recommends, however, 
are impractical for the range of values of x and 5 required by both the cross section 
and the diatomic-molecule calculations just mentioned in which many cycles of the 
cosine may contribute. Tables of values of J&(x), (generated by Morgan [14] and 
Luke and Weissman [15]) were computed laboriously by numerical integration of 
the associated ordinary differential equations, and accuracy was obtained to four 
or five decimal digits. We needed to evaluate the Bessel function and its derivative 
accurately for arbitrary values of x and 5. Thus a method of direct calculation 
was indicated as opposed to generating and interpolating in a very extensive 
table [ 161. 

Section II of this paper developes the method. Section III presents two examples 
of its use and provides brief comparisons with two other methods in current use. 
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II. METHOD 

The cosine form of the desired integral, Eq. (I), can be rewritten as, 

I([) = /02n’c cos I;t dt F(‘(5, t), 

in which the functionf(t) has been replaced by Eq. (2), a sum of all corresponding 
points in the successive cycles of cos St. The sum F({, t) converges provided 
If(t)1 decreases rapidly enough as t -+ co. F(t, t) becomes large as 5 increases 
because an increasing number of terms from the sum in Eq. (2) contribute. The 
integral I(c) gets smaller as 5 increases, because there are an increasing number of 
oscillatory cancellations. Thus, direct summation of f(t) leads to unacceptable 
difference-of-large-number cancellation errors. Previous workers have dealt with 
this problem by first integrating over each cycle or half-cycle and then applying 
various acceleration tricks to the sequence of subintegrals. These procedures 
require the evaluation of a large number of integrals and do not generally permit 
the use of the special properties which the sum F(<, t) is shown below to exhibit. 

Cancellation errors can be minimized by rewriting Eq. (4) in the form, 

48 = 12*” ~0s 0 dt [W, t) - F(5, 0)) + $ (FCC, 0) - F(L +jj], (5) 
0 

which is allowed because the constant and linear terms which have been added to 
Eq. (5) both integrate to zero against the cosine. This error-reducing “ortho- 
gonalization” is next extended to the individual terms. In actual numerical 
calculations, the sum function F should be defined as 

FCC, t> = ‘y [(f( 
j=O 

t + T) -f(Y)) + g (f($L) -f.( 2n(ic+ l) ))]. 

(f-3) 

There is enough local cancellation in Eq. (6) so that the sums can be performed with 
sufficient accuracy before including the basic cos ft term and before performing any 
numerical integrations over half- or whole-cycles. The technique of summing first 
is in marked contrast to the methods discussed in the literature, for example, by 
Hurwitz and Zweifel [4] and Alaylioglu, Evans, and Hyslop [9]. 

The sum F(c, t) from Eq. (2) or Eq. (6) can be expressed as a Fourier series, 

FCZ’, t) = f [A k cos k[t + & sin kct], 
k=O 
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so that the integral in Eq. (4) reduces to 

a> = (45) A, * 03) 

In general, the coefficients {A,} and {Bk) may be complex. However, without loss 
of generality we can assume that f(t), and hence F([, t), is real so that {AK} and 
{&) are real sequences. Using the Fourier integral transformation, 

f(t) = & Jew f(w) e+Jt do, 
cc 

F(<, t) can be written as 

(9) 

where the convergence factor e- 6j has been inserted to determine the position of 
certain poles which will appear relative to the path of integration. Later we will 
let p + 0 when the limit is unambiguous. The sum on j can now be performed 
giving 

To find the coefficients (A,} and {&} and thus 1(C) in particular, we multiply both 
Eq. (7) and Eq. (10) by eikZt, integrate from t = 0 to t = (27r/5), and find that 

The poles of the integrand lie above the real axis at w  = 15 + (i5/3/2~) for I = 0, 
52, etc. There is no pole at w  = kc if /3 > 0. When w  # kc and p -+ 0 the 
exponential terms in the numerator and denominator become equal and cancel. 
When w  = kc, the zero of (w - kc) cancels against the zero in the numerator. Thus 
the only pole of concern lies at w  = kc + (iQ3/2n) and Eq. (11) becomes 

Using the definition of the principal part integral Eq. (12) becomes, 

Iff(t) is even in addition to being real, J(o) must also be even and real. Then the 
principal part integral contributes only to the sine coefficients Bk , which integrate 
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to zero against cos it in Eq. (4). Thus, Eq. (13) shows that the Fourier coefficients 
of the even part of the sum F(<, t), 

FTC, t) = U/2) [F(s, t) + ~(5, F - t)], (14) 

are simply 
AC = ~S/+f(kS). (15) 

The power of the method becomes apparent when one tries to evaluate Z(C) 
for large 5. In this case F;“(<, t) has the exceedingly simple and accurate approxi- 
mation 

F”(& t) = A, + A, cos ct. (16) 

In fact, when J(kc) decays exponentially with increasing k, evaluating F”([, t) at 
only two points in 0 < t < 25-15 suffices to give the coefficient A, which integrates 
to zero against cos LJ and A, which gives the desired integral by Eq. (8). 

When 5 is so small that F”({, 0) and F”(5, (r/Q) are not adequate to find A, 
with sufficient accuracy from Eq. (16), more points are needed in each cycle because 
AZ, A, , etc. also contribute. The best generalization is to evaluate Fe(<, t) at 
N + 1 equally spaced points on 0 < t < n/C. Then Z(c) is found by a finite discrete 
Fourier cosine transform of the form 

(17) 

The error here is then determined by the size of the Fourier coefficient which is the 
first alias of the desired mode k = 1. When N = 1 the largest error term isj(35). 
In general the error term from aliasing is f(2N5 + 0, which is indistinguishable 
fromf (LJ at the N + 1 values of t in the interval 0 to R-/[. HereJ(2NLJ is indistin- 
guishable from the constant term on the grid of N + 1 points spanning the half- 
cycle, but integrates to zero so does not contribute to the error. Since the points 
of evaluation off are equally spaced, the same f evaluations could be used for 
several values of 5. Furthermore, as in the case of the Bessel functions, recursion 
relations and multiple-angle formulae can be used to significantly reduce the 
number of transcendental function subroutine calls. 

III. EXAMPLES 

The method is now demonstrated on two examples, one which can be integrated 
analytically and the Bessel function K&c), whose evaluation originally motivated 
this work. The results in each case will be compared with summation of the half- 
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cycle integrals and with Shanks acceleration applied to partial sums of the half-cycle 
integrals [9, IO]. In each of these comparison cases, Gaussian integration with 
15-digit coefficients [17] is used to evaluate each of the half-cycle integrals. 
Comparison cases are run with equal numbers of function evaluations across a 
whole-cycle of cos [t. 

We do not provide comparisons with any direct quadrature methods which do 
not recognize the essential periodicity of the oscillatory portion of the integrand. 
The evidence is overwhelming that such approaches are inadequate. Nor do we 
attempt to compare with all possible choices of half- or whole-cycle quadrature 
formulae or with the spectrum of acceleration techniques. We have chosen a good 
representative of each. Rather, in these examples we wish to demonstrate the 
advantage which can be gained by noting the analytic simplification which our 
equivalent “orthogonalized” integrand undergoes in just the limit which gives the 
usual numerical approaches the most difficulty. 

The first example has a closed form 

z1(5’ x, = Jorn 2 dt = 2x coshr;rr5/2x) ’ (20) 

and the test is run with x = 2, 5 = 4. These values provide a case where 
f(t) = I/cash xt decreases smoothly and appreciably in the first few cycles and 
hence where acceleration of the half-cycle partial integrals is expected to pay the 
largest dividends. At the same time the relatively small value of 5 means that the 
orthogonalized Fourier method should not be maximally efficient. Several function 
evaluations per half-cycle are required to extract A, with sufficient accuracy from 
other low-order harmonics. Table I displays the results of this test. The l-point 
Gaussian results always evaluate the integrand at the zero of the term cos (t and 
hence the 2N = 2 results are meaningless for both the direct sum of the l-point 
Gaussian integrals and the Shanks acceleration of those results. The N = 1 
orthogonalized Fourier result is accurate to two figures (the correct digits are 
indicated by the underscore beneath each result) but the N = 2 result shows no 
improvement over this N = 1 result. The results are identical because the 
evaluation of F(5, (n/25)) and F([, (3~/2{)) occurs at zeroes of cos [t and hence 
adds no information to the finite discrete transform being performed. 

In this first test, the Shanks acceleration result was achieved using roughly 
half as many cycles of the cosine. Therefore, it is nominally twice as efficient as 
the other methods for a given number of evaluation points per cycle. Thus the 
result for 2N = 12 by the Shanks acceleration took roughly the same amount 
of computation and gives roughly the same accuracy as the 2N = 6 result by the 
orthogonalized Fourier method. Therefore, even in this relatively small-l; case, 
the orthogonalized Fourier method is at least as accurate per function evaluation 
as the accelerated method. Furthermore, it is easier to apply. 
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TABLE I 

m 
First Test Problem 

cos 5r 
~ dt. 

,, coshxt 

Evaluations off 
Per Cycle (2N) 

N-Point Gaussian 
& Cycle Integrals 

2 4.0 -0.0 .06J8807375 

4 .0839745904 .083745919 .06J8807375 

6 .0662966642 .0662966655 .0677539750 

8 .Oz8104294 .0~8104307 .0677537382 

10 .0677536908 .0677536921 .0677537378 
12 .0677536123 .0677536136 .0677537378 
14 .0677537442 .0677537456 .0677537378 

Shanks 
Acceleration 

- __- 

Orthogonalized 
Fourier 

- -___ 

co = exact .0677537778... .0677537378”* .0677537378**. 

In this test 5 = 4 and x = 2. This integral does not oscillate and hence nominally favors the 
usual acceleration methods. The significant figures are underlined. 

TABLE II 

s 

co 
Second Test Problem ecreosht cos (t dt. 

0 

Evaluations off 
Per Cycle (2N) 

N-Point Gaussian 
i Cycle Integrals 

Shanks 
Acceleration 

Orthogonalized 
Fourier 

2 
4 
6 
8 

10 
12 
14 

converged 
result 

-0.0 

9.370454 x 10-28 
1,383455 
7.561115 
7552814 A 
7.553059 
7.553052 

7.553050... 

4.0 

9.37045 x 10-2s 
7.383455 
7.561115 
7.552814 
7553059 L 
7.553052 

7 553050... i 

7.553054 x lo-= 

7.553054 
7.553053 
7.553060 
7.553056 

7.553052 
7.553050 

7.553050... 

Modified Bessel Function K&X) with x = 40, 5 = 39. Here so many cycles contribute that the 
acceleration advantage is only about 10% and the orthogonalized Fourier method is about 5 
or 6 times more efficient than the other two methods. 
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The second test problem, 

I&(x) E Joa e-“Cosht cos it dt, (21) 

is the modified Bessel function of imaginary order. In Table II, the results are shown 
for 5 = 39 and x = 40, the limit where 5 is large and our method is expected to 
work best. Note that at most only one extra digit of precision is obtained by 
going from 2 points per cycle in the orthogonalized Fourier method to ICpoints 
per cycle. This is so because round-off accuracy is obtained by the 2N = 2 result. 
By contrast, the 12- and 14point formulae are required by the other two methods 
to obtain even comparable accuracy. This is clearly an efficiency increase of at 
least a factor of 6. Furthermore, the acceleration advantage is less than 10 % in 
this problem. Shanks acceleration brings virtually no gain over summing the 
half-cycle integrals directly because in either case so many cycles of cos {t are 
required that a small reduction in the number makes no appreciable difference. 
The major gain, as demonstrated by the use of the orthogonalized Fourier method, 
comes from reducing the number of evaluation points per cycle to as small a number 
as possible. 

Note added in proof. In practical usage the accuracy of our method can be estimated by 
comparing the size of the integrand f(t) near t = 0 with the size of the expected answer. When 
oscillatory cancellation is expected to reduce the integrand by a factor even smaller than the 
machine round off limit, the numerical value obtained for the integral is suspect. 
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